Motivation

Future Requirements

Test results for symmetrical failures

Test results for asymmetrical failures

Summary test results and additional findings

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
MOTIVATION – PV IS RELEVANT FOR THE SYSTEM

Relevance of PV is increasing:

> Current situation in Germany: 37 GW PV installed base: **40-50% OF THE LOAD** is covered

> Present plan for grid development counts with 50-60 GW **RATHER CONSERVATIVE**
 → Even with such a scenario a couple of hours with dominating PV supply can be considered

In case of PV dominates generation, PV has to generate sufficient ancillary services

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
DENA-Study „Ancillary services 2030“

- Basic demand for RENEWABLE SOURCES for ancillary services
 - Static voltage support
 - Dynamic voltage support
 - Frequency support in case of over frequency
- Additional developments in the direction of:
 - Control and coordinated operation
 - Active power reserve
 - Black start

Most important contribution of « 3. GENERATION » PV-Systems

- Aggregated operation of many distributed PV-plants as a tool for VOLTAGE SUPPORT MANAGEMENT
- Provision of ACTIVE POWER RESERVE for frequency support (e.g. with batteries)

High system responsibility requires more system interaction and new operation modes
LOW VOLTAGE RIDE THROUGH WITH HIGH CURRENT INJECTION

1. Motivation

2. Future Requirements

3. Test results for symmetrical failures

4. Test results for asymmetrical failures

5. Summary test results and additional findings

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
EXAMPLE FOR STRICT LVRT-REQUIREMENTS

"Renewables Standards", version 1.0, November 2013, Regulatory & Supervisory Bureau – Dubai, UAE

LVRT

The generating unit shall stay connected to the network and continue stable operation when the actual course of each of the three phase-to-phase voltages at the connection point remains within the blue hatched area defined in Figure 9.

Operation with 10% or even 0% of nominal voltage can be guaranteed with a stable DC Source only. VAr-compensation units cannot be operated during such states.

Please consider, that PV voltage rises to no load voltage during the event.

Figure 9: Fault ride through profile.
EXAMPLE FOR STRICT LVRT-REQUIREMENTS

- Below 42% of retained voltage, reactive current shall be supplied not less than 1.2pu.

- Control response time after the fault inception into the network:
 a) Additional reactive current up to 0.6pu must be provided within 20 ms
 b) The full range of additional reactive power must be provided no later than 60 ms.

Critical requirements:
- Reaction time
- Currents above 100% of nominal current

Figure 10: Reactive current injection during fault for non-synchronously connected generating units
Current threshold has to cover the first peak. Upper tolerance band > 120 % I_{nom}!

Set point high enough to consider oscillations? 126 % set point necessary to fulfill 120 % criteria

Lower tolerance band (120 % I_{nom})

Exemplary course of positive sequence reactive current during 3ph fault with set point 120 % I_{nom}

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
Due to the voltage drop at MV transformer the gradient must be adapted to higher values of k-factor.
WHY FRT CURRENTS ABOVE 100 % OF NOMINAL CURRENT

- Voltage support effect is proportional to the current flowing during FRT. Thus a FRT current of 120% to 130% the nominal current helps to keep the voltage up. (e.g. during switching on of VAR-compensation-units)

- Flexibility of the engineering of protection means for electric installations → Higher current for triggering protection units (e.g. circuit breaker).

- Support in starting large motors in weak grids.

- Premise to install grid supporting or grid building battery inverters. Especially in voltage control mode of battery inverters, a higher current helps to handle critical grid situations.

→ Experiences of solar inverters can be mapped to battery inverter design

Higher FRT currents expand the degree of freedom while installing large solar and/or battery equipment

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
LOW VOLTAGE RIDE THROUGH WITH HIGH CURRENT INJECTION

1. Motivation

2. Future Requirements

3. Test results for symmetrical failures

4. Test results for asymmetrical failures

5. Summary test results and additional findings
RESULTS: FRT TEST SETUP

- Test setup allows to execute several hundred FRT operations during a limited period (e.g. one day) for endurance tests
- Test do not influence the supplying grid

Endurance testing effects two SC2500 inverters (one sink and one source). 310 tests performed

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
BEHAVIOR DURING A THREE PHASE VOLTAGE DIP

3ph fault to 35 %Un @ 2.2 MW, 50 °C, 3300A set point, 400 ms voltage dip

Requirements about reactive current’s dynamic behavior fulfilled!

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
DEPENDENCY OF FRT FUNCTIONALITY ON TRANSFORMER CONFIGURATION

Configuration with a dedicated low voltage winding for every inverter

Critical state A (see previous slide):
Circulating currents blocked by the galvanic isolation between single LV-windings

Configuration with one low voltage winding for a couple of inverters

Critical state A (see previous slide):
Large circulating currents may occur and trigger overcurrent detection ⇒ FRT is interrupted

In case of multiple inverters connected to one LV-winding: FRT-Test should be performed for the entire set up. Test with one inverter only is not sufficient.

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
1. Motivation

2. Future Requirements

3. Test results for symmetrical failures

4. Test results for asymmetrical failures

5. Summary test results and additional findings
LVRT-TEST FOR 2PH FAULT

2ph fault to 15%Un @ 2.5 MW, 25 °C, 3300A set point, 400 ms voltage dip

Reactive component of phase 2
Reactive component of phase 1 and phase 3 is small. The current visible in the diagram above is flowing as an active current. ⇒ Pure reactive current injection and same amplitude for all phases: Only in case of three phase failures

Positive sequence voltage determines positive sequence current via k-factor!
Negative sequence voltage determines negative sequence current via k-factor!

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
LOW VOLTAGE RIDE THROUGH WITH HIGH CURRENT INJECTION

<table>
<thead>
<tr>
<th>1</th>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Future Requirements</td>
</tr>
<tr>
<td>3</td>
<td>Test results for symmetrical failures</td>
</tr>
<tr>
<td>4</td>
<td>Test results for asymmetrical failures</td>
</tr>
<tr>
<td>5</td>
<td>Summary test results and additional findings</td>
</tr>
</tbody>
</table>

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
SUMMARY TEST RESULTS DYNAMIC VOLTAGE SUPPORT

➢ FRT is one of the pillars of ancillary services, renewable energy sources has to offer, in case their contribution to the energy supply rises.

➢ A FRT current of 120% to 130% the nominal current is feasible for standard inverters. Tests results have been presented here.

➢ FRT is possible for symmetrical and asymmetrical voltage dips. Both configurations should be tested. Tests have been presented here.

➢ In the initialization phase (voltage dips occurs), a current overshoot and a damped oscillation has to be considered. The semiconductors in the inverters has to handle this state. Thus an endurance test with 310 single FRT events had been performed and presented here.

➢ FRT test should be performed with no load voltage on DC and not with MPP voltage because the PV generator is unburdened during FRT (only reactive current is injected). In our case 1250 V/ DC @ 50° ambient temperature had been chosen.

➢ SMA has tested the FRT functionality carefully

October 2017, 7th Solar integration Workshop in Berlin, Andreas Falk, LVRT
If the grid voltage dip falls below a certain limit, FRT is feasible only in case a DC power source is available (PV-generator or battery). VAr- compensation units can not contribute in such a case.

Due to oscillations in the initialization phase, it could be necessary to choose a FRT current higher the requested current to be sure to reach the nominal FRT-value in time.

In most of the cases a k-factor larger than 2 has to be chosen. This is necessary to compensate the voltage drop on transformers and line inductors in the plant (inverter measurement is localized on LV-side and the inverter increases the measured voltage with his injected FRT current).

In case of multiple inverters connected to one LV-winding: FRT-Test should be performed for the entire set up. Test with one inverter only is not sufficient.

Literature:
- A modelling approach for dynamic short-circuit analysis of the German power system considering all voltage levels, Sascha Altschäffel; International ETG Congress 2015, November 17-18, 2015, Bonn, Germany
- "Renewables Standards", version 1.0, November 2013, Regulatory & Supervisory Bureau – Dubai, UAE
- VDE-AR-N 4110, draft, March 2017 (Technical requirements for the connection of customer equipment to MV-grid)
- dena Ancillary Services Study 2030, Berlin, 11/02/2014
- Dr. Karl Nesemann, A. Falk, PV-Zentralwechselrichter: Klar zur Energiewende? Future-proof PV inverter has to be designed for high DC operation voltages and for reactive power at night, 31. Symposium Photovoltaische Solarenergie 2016, Beitrag D, (in English language)
- Enhanced current control scheme for large-scale solar inverters, Tomomichi Ito, Hitachi Ltd., Japan; PCIM Europe 2017, 16 – 18 May 2017, Nuremberg, Germany

Contact: andreas.falk@sma.de – Tel.: +49/561/ 9522-3313