Impact of waterworks pumps demand response to increase maximum photovoltaic integration capacity

*M. Imanaka, Y. Uchiyama, T. Saito, N. Fujii, J. Baba
(The University of Tokyo)
N. Higa (Sumaeco Inc.)

Index

- Introduction
- Step1: Calculate “PV surplus” by “Power system model”
 - Method and Result
- Step2: Calculate pump power change by “Waterworks system model”
 - Method and Result
- Step3: Evaluate impact of Pump DR by “Power system model”
 - Result
- Summary

This research is supported by "Miyako-city island type smart community evaluation project".
PV Influence to supply-demand balance

Net demand curve change by increasing PV penetration

Demand is under minimum output of total power generations -> PV will be curtailed.

Solution? Demand response of Waterworks pumps!

By demand response (DR) of waterworks pumps, increase daytime demand and reduce curtailment.
Target: Miyako island

- Sub-tropical, Isolated grid, Population: 55000
- Electrical demand: 18MW~55MW
- PV: **22.2MW**, Wind: 4.8MW, Battery: 4.0MW
- Additional PV installation is restricted because of "power surplus".
- **Waterworks pumps: 5MW!**
- Pump DR tests has done to reduce peak and mitigate surplus.

Research object

Evaluate the impact of demand response (DR) of waterworks pumps by shifting the time of pump operation

Constraint conditions
1. Tank water level is under 100%
2. Water usage is fixed

The University of Tokyo, Baba Lab
Overview of simulation

Suppose that there is no real-time signal from power system operator to waterworks system operator.

Step 1: Calculate hourly PV surplus by “Power system model”
Step 2: Calculate hourly PV surplus consumption and pump power change by “Waterworks system model”
Step 3: Calculate the impact of Pump DR to Power System by “Power system model”

The University of Tokyo, Baba Lab

Step 1: Power system model of the island

- Time resolution: 1 hour
- Time span: 2014/10~2015/3

The University of Tokyo, Baba Lab
Step1: Estimate actual load

0. Hourly Large PV output and net load data are got
1. Estimate existing FIT-PV output using Large PV data
2. Estimate “actual load”

 $\text{Actual load} = \text{Net load} + \text{Large PV} + \text{FIT-PV}$

3. Calculate net load with larger PV installation scenarios

Step1: PV surplus and PV threshold

- “**PV surplus**” was defined as hourly PV output minus constant PV threshold.
- **Not** calculated by hourly net load itself

- **PV threshold** was defined as a value by which the minimum net load in half year was equal to minimum DG output.
Step1: Calculation result of PV surplus

- The amount of PV surplus increased dramatically when total capacity of PV increased.
- PV surplus was relatively small and less-frequent in Dec. and Jan..

Hourly PV surplus in the half year

![Hourly PV surplus graph]

Example of PV surplus in a day (Feb. 15)

![Example of PV surplus graph]

Next: Step2

Suppose that there is no real-time signal from power system operator to waterworks system operator.

- Step1: Calculate hourly PV surplus by “Power system model”
- Step2: Calculate hourly PV surplus consumption and pump power change by “Waterworks system model”
- Step3: Calculate the impact of Pump DR to Power System by “Power system model”

![Flowchart of system model]

The University of Tokyo, Baba Lab
Step 2: Waterworks pump system model

- There are 5 farmponds and each water level is calculated.
- PV surplus is used as target of the total pump power.
- Water level of the farmpond is calculated using actual water usage data.

When "PV surplus" exists, Pump consume it

Step 2: Determination sequence of pump power

PV surplus
(from electrical model)

- Pump power target = PV surplus
- Farm pond 1
- Pump flow target
- Restrictions check: Max. flow, Water level
- Pump flow
- Water level
- Pump power

- Rest of Power target
- Farm pond 2
- Flow target
- Flow
- Flow level
- Pump water flow
- Control

- Rest of Power target
- Farm pond 5
- Flow target
- Flow
- Flow level
- Pump power

Leftover of PV surplus

Total pump power with DR = Total pump power without DR
= Net power change

The University of Tokyo, Baba Lab
Step2: Results in half year

- The ratio of the leftover became higher in proportion to increase of PV installation,
 - In PV24MW case, almost all of PV surplus was consumed by pumps.
 - Even in the PV34MW scenario, half of PV surplus was consumed by pumps.

<table>
<thead>
<tr>
<th>PV scenario</th>
<th>24MW</th>
<th>29MW</th>
<th>34MW</th>
<th>39MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV surplus [GWh]</td>
<td>0.46</td>
<td>1.49</td>
<td>3.04</td>
<td>4.59</td>
</tr>
<tr>
<td>Leftover [GWh]</td>
<td>0.002</td>
<td>0.38</td>
<td>1.48</td>
<td>2.79</td>
</tr>
<tr>
<td>Leftover/ surplus</td>
<td>0.005</td>
<td>0.25</td>
<td>0.49</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Step2: Result when total PV was 29MW

- From Oct. to Jan., most of the PV surplus was consumed because the PV surplus itself was relatively small.
- The PV surplus remained in February and March.
 - The water level reaches 100% frequently.

Hourly PV surplus and leftover
Hourly water level
Step 2: Example of pump power with and without DR

- Without DR, pump power is relatively flat.
- When there is large PV surplus, the pump power increases dramatically.

![Graph showing pump power with and without DR]

The University of Tokyo, Baba Lab

Next: Step 3 (only result)

Suppose there is no real-time signal from power system operator to waterworks system operator.

Step 1: Calculate hourly PV surplus by “Power system model”
Step 2: Calculate hourly PV surplus consumption and pump power change by “Waterworks system model”
Step 3: Calculate the impact of Pump DR to Power System by “Power system model”
Step 3: Impact of Pump DR to Power System

- Fuel reduction by DR itself is not large.
- Curtailment reduction leads to more PV installation.

<table>
<thead>
<tr>
<th>PV scenario</th>
<th>24MW</th>
<th>29MW</th>
<th>34MW</th>
<th>39MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel reduction rate [%]</td>
<td>w/o DR: 2.9</td>
<td>4.9</td>
<td>6.6</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>With DR: 3.0</td>
<td>4.9</td>
<td>6.7</td>
<td>8.3</td>
</tr>
<tr>
<td>Curtailment energy [GWh]</td>
<td>w/o DR: 0.01</td>
<td>0.10</td>
<td>0.41</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>With DR: 0.00</td>
<td>0.06</td>
<td>0.33</td>
<td>0.82</td>
</tr>
<tr>
<td>Curtailment time [hour]</td>
<td>w/o DR: 10</td>
<td>58</td>
<td>143</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>With DR: 0</td>
<td>33</td>
<td>107</td>
<td>184</td>
</tr>
</tbody>
</table>

The University of Tokyo, Baba Lab

Step3: Curtailment hour and energy

- When the PV installation was relatively small, most of the PV surplus could be consumed by the pumps.
- When PV installation became larger, the waterworks pumps could not consume all of the PV surplus power.
- About 2 MW PV can be installed additionally with same extent curtailment.
Summary

- This paper evaluated impact of DR of waterworks pumps to consume the PV surplus.
- Seasonal characteristics of water usage and PV surplus is important for analysis of pump DR.
- Fuel reduction by DR itself is not large, but the curtailment reduction leads to more PV installation.

Future work
- Forecast of PV generation and water usage and more sophisticated water level control.
- IoT sprinklers can control the water usage itself.

Thank you

- Please give me questions or comments!