PV and opportunistic electric vehicle charging in a Swedish distribution grid

Rasmus Luthander
Department of Engineering Sciences
Uppsala University, Sweden

Co-authors
Mahmoud Shepero
Joakim Munkhammar
Joakim Widén
Introduction

What we study

How we do it
Introduction

• 10kV / 400V three-phase power grid
• 5174 grid nodes / end-users
• Only electric vehicles (EV) in the car fleet
• Over- and undervoltage due to
 • High load (mainly winter)
 • High PV generation (mainly summer)

How we do it
Introduction

- 10kV / 400V three-phase power grid
- 5174 grid nodes / end-users
- Only electric vehicles (EV) in the car fleet
- Over- and undervoltage due to
 - High load (mainly winter)
 - High PV generation (mainly summer)

- PV potential using LiDAR data
- PV penetration 0-100% of yearly load
- Markov-chain EV charging model
- Newton-Raphson power flow solution
PV generation & load data

- Rooftop PV power potential using GIS, LiDAR and irradiance data
PV generation & load data

- Rooftop PV power potential using GIS, LiDAR and irradiance data
- DSO ‘Herrljunga Elektriska’
 - Hourly load for 5174 end-users (2014)
PV generation & load data

- Rooftop PV power potential using GIS, LiDAR and irradiance data
- DSO ‘Herrljunga Elektriska’
 - Hourly load for 5174 end-users (2014)
- Yearly PV penetration with randomly selected rooftops
 - 0%
 - 10%
 - ...
 - 90%
 - 100%
Power grid

- 2 MV grids
- 338 LV grids (rural & city)
- 3891 nodes, 5174 end-uses
Power grid

- 2 MV grids
- 338 LV grids (rural & city)
- 3891 nodes, 5174 end-uses
- Hourly load data
Power grid

- 2 MV grids
- 338 LV grids (rural & city)
- 3891 nodes, 5174 end-uses
- Hourly load data
- Allowed end-user voltage
 - Max 1.1 pu
 - Min 0.9 pu
- Always 1.0 pu at the primary substations
Power grid

MV grid
- Total length of feeders: 312 km
- Number of feeders: 638

LV grid
- Total length of feeders: 550 km
- Number of feeders: 7101
EV charging model

- Opportunistic EV charging – charging whenever & wherever parked

For more information: M. Shepero and J. Munkhammar. *Modelling charging of electric vehicles using mixture of user behaviours*. 1st E-Mobility Integration Symposium, October 23rd, Berlin
EV charging model

- Opportunistic EV charging – charging whenever & wherever parked
- Time dependent (time of day, weekend/weekday)

For more information: M. Shepero and J. Munkhammar. Modelling charging of electric vehicles using mixture of user behaviours. 1st E-Mobility Integration Symposium, October 23rd, Berlin
EV charging model

• Opportunistic EV charging – charging whenever & wherever parked
• Time dependent (time of day, weekend/weekday)
• Markov chain with 3 states
 – Home,
 – Work
 – Other (public parking lots)
EV charging model

• Opportunistic EV charging – charging whenever & wherever parked
• Time dependent (time of day, weekend/weekday)
• Markov chain with 3 states
 – Home
 – Work
 – Other (public parking lots)
• 2 summer + 2 winter weeks
• Opportunistic EV charging – charging whenever & wherever parked
• Time dependent (time of day, weekend/weekday)
• Markov chain with 3 states
 – Home
 – Work
 – Other (public parking lots)
• 2 summer + 2 winter weeks
• Charging power: 3.7 kW
EV charging model

• “Worst-case” scenario: 100% EVs of the total fleet
 – 5295 vehicles in 2016 in the municipality
 – 333 extra EVs in the summer (summer houses)
EV charging model

• “Worst-case” scenario: 100% EVs of the total fleet
 – 5295 vehicles in 2016 in the municipality
 – 333 extra EVs in the summer (summer houses)

• Aggregated 1-minute EV charging data to hourly resolution

\[
E_t^n = \begin{cases}
E_{t-1}^n + 3.7 \times \Delta t & \text{if charging}, \\
E_{t-1}^n - \eta \times D & \text{if driving}, \\
E_{t-1}^n & \text{else},
\end{cases}
\]
EV charging model

• “Worst-case” scenario: 100% EVs of the total fleet
 – 5295 vehicles in 2016 in the municipality
 – 333 extra EVs in the summer (summer houses)

• Aggregated 1-minute EV charging data to hourly resolution

Battery charge per EV at time t

$E_t^n = \begin{cases}
E_{t-1}^n + 3.7 \times \Delta t & \text{if charging,} \\
E_{t-1}^n - \eta \times D & \text{if driving,} \\
E_{t-1}^n & \text{else,}
\end{cases}$

3.7 kW charging power \times time

Consumption per km \times driving distance (km)
Results – load and generation

- Small difference in load with EV
 - 18% higher in the summer weeks
 - 9% higher in the winter weeks
Results – load and generation

• Small difference in load with EV
 – 18% higher in the summer weeks
 – 9% higher in the winter weeks

• Large seasonal variation in PV generation
 – 100% penetration in the figures on a yearly basis
Results – overvoltage

Number of customers with overvoltage

Aggregated customer-hours

Yearly PV penetration [%]
Results – overvoltage

- Winter
- Summer

With EVs
No EVs

![Graph showing overvoltage with and without EVs in winter and summer](image-url)
Results – undervoltage

Winter

Summer

Winter

Summer
Results – undervoltage

With EVs

No EVs

With EVs

No EVs

With EVs

No EVs

With EVs

No EVs
Discussion & conclusion

- EV charging has a small impact on the voltage in the studied grid
Discussion & conclusion

• EV charging has a small impact on the voltage in the studied grid
• 50% of the customers are affected by overvoltage in a scenario of 100% PV penetration – almost no reduction with EV charging
 – Overvoltage in LV grids far from the distribution substations
 – EV charging during day mainly in the city areas close to substations
Discussion & conclusion

• PV power has a small impact on undervoltage due to EV charging in the winter, in the summer with PV > 50%
Discussion & conclusion

- PV power has a small impact on undervoltage due to EV charging in the winter, in the summer with PV > 50%
- 1.5% of the customers affected by undervoltage in the winter
 - Undervoltage in LV grids far from the distribution substations
 - EV charging mainly in the morning (to work) and in the afternoon (to home)
 - Sun is above the horizon approx. 08:40 – 15:30 in early January
Discussion & conclusion

• Possible solutions to avoid voltage limit violations
 – Grid extension – can be costly for rural grids
 – ‘Smart-grid’, for example real-time measurements with tap-changing transformers
 – Scheduled EV charging or ‘vehicle to grid’ – incentives are needed
Thank you for listening!

Rasmus Luthander
Mahmoud Shepero
Joakim Munkhammar
Joakim Widén

firstname.surname@angstrom.uu.se

Built Environment Energy Systems Group (BEESG)
Department of Engineering Sciences
Uppsala University, Sweden