Secrets of Successful Integration

Debbie Lew Debra Lew LLC Solar Integration Workshop October 17, 2019

Wind and PV affect planning and operations

System Stability

- High penetrations of inverter-based resources (IBR)
- Essential reliability services
- Some transient stability and small signal stability issues still need to be addressed

System Balancing

- Wind and solar variability and uncertainty
- Reducing curtailment
- NERC standards

Resource Adequacy

- Seasonal mismatch of supply and demand
- Periods of low wind/solar/hydro
- 1 day in 10 years Loss of Load Expectation

Short-term

Medium-term

Graphics: EU-MIGRATE 2016 CAISO, Fast Facts 2016 A. Bloom, ESIG Planning WG Oct 2018

Depending on who you are, your challenges differ

Well-connected within a larger grid

System balancing is likely the key challenge. Make room for and fine-tune VRE output.

- Minimum generation levels
- Using forecasts to decommit conventional generators as appropriate
- 5 minute security-constrained economic dispatch of VRE
- Providing regulation/spinning reserves
 from curtailed VRE

Islanded system/Loosely tied

Island, no interties

Frequency and grid strength are important issues. In addition previous actions:

- Increase frequency of scheduling of interties
- Fast frequency response from VRE (and other sources)
- Synchronous condenser (mode) to maintain inertia and grid strength

In addition to previous issues:

- May need to fine-tune VRE controls
- May need stand-alone or hybridized storage
- May need grid-forming converters

Managing variability

We know how to find flexibility

- Transmission, larger markets, wider trading
- Faster trading, scheduling closer to realtime
- Forecasting

C

DEBRA LEW LLC

- Extract flexibility from variable resources dispatch and ancillary services
- Extract flexibility from non-variable resources
- Storage of different durations
- Demand-side flexibility

Source: Lew, et al, Secrets of Successful Integration, IEEE PES Magazine, Nov/Dec 2019

How are different regions meeting resource adequacy?

Source: Lew, et al, Secrets of Successful Integration, IEEE PES Magazine, Nov/Dec 2019

Flexibility of non-variable generators

Kauai, Hawaii

California

Electricity Net Load (Load – Wind and Solar Generation)

Lew, et al, "Secrets of Successful Integration: Operating Experience with High Levels of Variable, Inverter-based Generation" IEEE PES Magazine, Nov/Dec 2019

ORNL, DOE 2017 Hydropower Market Report, April 2018; A. Moreno, DOE, CREPC, April 2019

Wind and Solar Generation

Dispatching Demand

Resource Adequacy

- Portland General Electric Peak Time Rebates
 - \$1/kWh peak time rebate
 - When load forecast is in top 1% of annual load hours; 3-4 hour event; day-ahead text/email
 - Typical savings \$2-3 per event; estimated 12-20 events per year
- Distribution coop
 - Critical peak and high peak rebates: \$1/kWh and \$0.5/kWh
 - Response rate: 70% of participants
- Baltimore Gas & Electric Energy Savings Days
 - \$1.25/kWh peak time rebate
 - Typical savings \$5-8 per event; up to 6 events per year

Managing inverter-based resources

The grid needs essential reliability services to operate stably and reliably

- Frequency support
 - Primary frequency response
 - Secondary frequency regulation/Regulation
 - Load following/ramping
 - Contingency/spin
 - Ride-through
- Voltage support
 - Reactive power
 - Ride-through

GE Energy Consulting, 2017 With fewer synchronous generators online, we need renewables to provide these services

How reliability services from VRE can help

A problematic day in California

How wind helps reliability in Colorado (Xcel/PSCO)

Source: Drake Bartlett, PSCO/Xcel

Grid codes are essential – they require generators to ride-through speed bumps on the grid

- If there is a transmission fault, you want your generators to ride-through and continue to provide power to support the grid.
- Grid codes require capabilities that you may not need at low levels but will need at higher levels of renewables.
- If you are installing wind/PV capacity *quickly*, grid codes that require advanced capabilities are critical! Legacy (old) systems may have long lifetimes.

Misunderstandings of inverter operation, conflicting requirements, and instantaneous measurements led to Blue Cut Event with loss of 1200 MW PV

GE Energy Consulting, 2018; Graphics: NERC, 1200 MW Fault Induced Solar PV Resource Interruption Disturbance Report, June 2017

System stability

An actual island • Kauai, Hawaii – synchronous condenser mode on gas turbine

• Texas – PSCAD modeling; monitoring inertia; synchronous condensers

• Ireland – capping system non-synchronous penetration at 65%; new system services

Loosely connected • South Australia – reliability-must-run or out-of-merit dispatch; synchronous condensers; PSCAD modeling

Moderately interconnected

- Xcel/CO
- Denmark
- Strongly interconnected • Southwest Power Pool

Source: Lew, et al, Secrets of Successful Integration, IEEE PES Magazine, Nov/Dec 2019

Synchronous condensers for grid strength in ERCOT

Bus Voltage (pu)

1.16 1.12 1.08 1.04

0.96 0.92 0.88 0.84

800 mi/1300km

DEBRA LEW LLC

Okm

Graphics: Fred Huang 2019; ERCOT, Dynamic Stability Assessment of High Penetration of Renewable Generation in the ERCOT Grid Version 1.0, ERCOT, 2018

5 Sec

Kauai uses storage and synchronous condensers

- Batteries and pumped hydro storage
 - To accommodate 100% instantaneous renewables: use gas turbine as synchronous condenser to maintain inertia and use storage to provide contingency reserves

McBryde Hydro, Kaläheo

Lew, et al, "Secrets of Successful Integration: Operating Experience with High Levels of Variable, Inverter-based Generation" IEEE PES Magazine, Nov/Dec 2019

Storage Hydro

AES/PMRF Sola

plus Storage and Microgrid

DEBBIE LEW DEBBIE@DEBBIELEW.COM (303) 819-3470

PV: accurate and fast regulation reserves

CAISO Regulation Accuracy

Data (left) and graphic (right) Source: Loutan, et al, "Using Renewables to Operate a Low-Carbon Grid", CAISO, 2017

Southwest Power Pool reduced wind curtailment significantly during 2017-2018

Wind Curtailed MWh
290,703
298,494
765,676
1,800,472
905,519

Total SPP Curtailments

Lew et al, "Operating Experiences with High Penetrations of Variable Energy Resources," Wind Integration Workshop, Oct 2019

More interconnection to increase geographic diversity

Increased interconnections allows for retirement of more thermal capacity

Continuing to build out more interconnectors in the future

Jorgensen, Energinet, 2019; for Lew et al, "Operating Experiences with High Penetrations of Variable Energy Resources," Wind Integration Workshop, Oct 2019

Source: Energinet, 2018

Well-interconnected systems

Left: Lew, et al, Secrets of Successful Integration, IEEE PES Magazine, Nov/Dec 2019. Right: same with updated interconnection data from Energinet 2019

How does KIUC manage zero interconnections?

Kauai on target to hit $\sim 80\%$ renewable electricity by 2025

- KIUC has been and continues to build PV/battery plants
- Considering pumped hydro storage
- A fleet of fast-start diesel reciprocating engines helps manage variability and cloud events

Data from KIUC, 2018

System stability

How do reliability services from wind/PV differ from conventional generators?

- Faster response
- Can have more aggressive droop
- Little/no wear-and-tear
- Accurate ability to follow signal
- Superior ride-through of some types of disturbances
- Can provide or absorb reactive power when it's not sunny or not windy
- Does not contribute to grid strength (short circuit strength) today
- Mechanisms to provide headroom for underfrequency response, i.e. dispatch below 100% of available power, are different

What essential reliability services can wind/PV provide?

- Inertia/Fast Frequency Response (Quebec, Ontario)
 - Wind can provide synthetic inertia (does not require pre-curtailment)
 - Pre-curtailed PV can provide fast frequency response (down response does not require precurtailment)
- Primary Frequency Response (ERCOT, Quebec, Ontario)
 - Pre-curtailed wind/PV can provide PFR (down response does not require pre-curtailment)
- Secondary/Regulation/AGC (Xcel)
 - Pre-curtailed wind/PV can provide regulation (down regulation does not require pre-curtailment)
- Spinning reserves (Xcel)
 - Pre-curtailed wind can provide spinning reserves (down regulation does not require precurtailment)
- Ride-through (NERC PRC-024)
 - Wind/PV can ride-through voltage and frequency events
- Voltage support (NERC VAR-001 and VAR-002)
 - Wind/PV can provide or absorb reactive power when it is not windy/sunny

Arizona Public Service

- In EIM; considering EDAM
- New Trough Hour Trading product
- Added 500 MW quick start gas for capacity and ramping
- Reduced P_{min} on CC and coal
- Installing 850 MW batteries
- Highest percentage use of TOU rates
- Upgrade EMS to put PV on AGC
- Forecasting of load and renewables

J. Thompson, APS, "What if Your Neighboring Utility Goes to 100% Renewables," CREPC April 2019

TOU rates look like storage

TOU rates reduce cost of service - can we quantify that value?

DEBRA LEW LLC

Lew, et al, GE Energy Consulting, "DER Compensation: Colorado Springs Utilities Solar Program Design Study," ESIG Oct 2017

Alternative rate structures can bring significant value to the

Benefits of trading

By June 2019, the EIM had saved \$736M

Curtailment reductions and associated CO₂ reductions

Year	Quarter	MWh	Eq. Tons CO2
	1	8,860	3,792
2015	2	3,629	1,553
	3	828	354
	4	17,765	7,521
	1	112,948	48,342
	2	158,806	67,969
2016	3	33,094	14,164
	4	23,390	10,011
	1	52,651	22,535
2017	2	67,055	28,700
	3	23,331	9,986
	4	18,060	7,730
	1	65,860	28,188
2018	2	129,128	55,267
	3	19,032	8,146
	4	23,425	10,026
2019	1	52,254	22,365
	2	132,937	56,897
	Total	943,053	403,546

https://www.westerneim.com/Documents/ISO-EIMBenefitsReportQ2-2019.pdf