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• 10kV / 400V three-phase power grid 
• 5174 grid nodes / end-users  
• Only electric vehicles (EV) in the car fleet 
• Over- and undervoltage due to 

• High load (mainly winter) 
• High PV generation (mainly summer) 
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• PV potential using LiDAR data 
• PV penetration 0-100% of yearly load 
• Markov-chain EV charging model 
• Newton-Raphson power flow solution 
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• Yearly PV penetration with 
randomly selected rooftops 
– 0% 
– 10% 
– … 
– 90% 
– 100% 



Power grid 
• 2 MV grids 
• 338 LV grids (rural & city) 
• 3891 nodes, 5174 end-uses 
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Power grid 
• 2 MV grids 
• 338 LV grids (rural & city) 
• 3891 nodes, 5174 end-uses 
• Hourly load data 
• Allowed end-user voltage 

– Max 1.1 pu 
– Min 0.9 pu 

• Always 1.0 pu at the primary 
substations 

 



Power grid 



EV charging model 
 • Opportunistic EV charging – 
charging whenever & wherever 
parked 

For more information:  M. Shepero and J. Munkhammar. Modelling charging of electric 
         vehicles using mixture of user behaviours. 1st E-Mobility  
         Integration Symposium, October 23rd, Berlin 
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charging whenever & wherever 
parked 

• Time dependent (time of day, 
weekend/weekday) 

• Markov chain with 3 states 
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– Other (public parking lots) 
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EV charging model 
 • Opportunistic EV charging – 
charging whenever & wherever 
parked 

• Time dependent (time of day, 
weekend/weekday) 

• Markov chain with 3 states 
– Home  
– Work 
– Other (public parking lots) 

• 2 summer + 2 winter weeks  
• Charging power: 3.7 kW 
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EV charging model 
 • “Worst-case” scenario: 100% EVs of the total fleet 

– 5295 vehicles in 2016 in the municipality 
– 333 extra EVs in the summer (summer houses)  
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EV charging model 
 • “Worst-case” scenario: 100% EVs of the total fleet 

– 5295 vehicles in 2016 in the municipality 
– 333 extra EVs in the summer (summer houses)  

• Aggregated 1-minute EV charging data to hourly 
resolution  

 

Battery 
charge 
per EV at 
time t 

3.7 kW charging power × time 

Consumption per km × driving distance (km) 



Results – load and generation 
• Small difference in load with EV 

– 18% higher in the summer weeks 
– 9% higher in the winter weeks 

 
 

Winter 

Summer 



Results – load and generation 
• Small difference in load with EV 

– 18% higher in the summer weeks 
– 9% higher in the winter weeks 

• Large seasonal variation in PV 
generation  
– 100% penetration in the figures on 

a yearly basis 

 
 

Winter 
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Results – overvoltage  

Number of 
customers with 
overvoltage 

Aggregated 
customer-hours 



Results – overvoltage  

Winter Summer 

Winter Summer 

With EVs 

No EVs 

With EVs 

No EVs 
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Winter Summer 

Winter 

Summer 



Results – undervoltage  

No EVs 

With EVs 

No EVs 

With EVs 

No EVs 

With EVs 

With EVs 

No EVs 



Discussion & conclusion 

• EV charging has a small impact on the voltage in the 
studied grid  
 



Discussion & conclusion 

• EV charging has a small impact on the voltage in the 
studied grid  

• 50% of the customers are affected by overvoltage in a 
scenario of 100% PV penetration – almost no reduction 
with EV charging 
– Overvoltage in LV grids far from the distribution substations  
– EV charging during day mainly in the city areas close to 

substations 
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• PV power has a small impact on undervoltage due to 
EV charging in the winter, in the summer with PV > 50%  



Discussion & conclusion 

• PV power has a small impact on undervoltage due to 
EV charging in the winter, in the summer with PV > 50%  

• 1.5% of the customers affected by undervoltage in the 
winter 
– Undervoltage in LV grids far from the distribution substations  
– EV charging mainly in the morning (to work) and in the 

afternoon (to home) 
– Sun is above the horizon approx. 08:40 – 15:30 in early January 



Discussion & conclusion 

• Possible solutions to avoid voltage limit violations 
– Grid extension – can be costly for rural grids 
– ‘Smart-grid’, for example real-time measurements with tap-

changing transformers  
– Scheduled EV charging or ‘vehicle to grid’ – incentives are 

needed 
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